Tuesday, April 25, 2017

Everything Is Political

Today, I attended the annual all-staff meeting at work. It's always a nice event, most of our staff is made up of part-time, seasonal workers, so the meeting is a really sweet reunion. After working nights and weekends all winter without seeing too many people, catching up is a lot of fun. I also had a good long talk with my new supervisor (my old supervisor retired on April 14th). I let him know about a couple of things that I am concerned about, and we made arrangements for him to stop by at night and see what my typical work experience is. We get along well, and he is 'on the same page' about certain projects I suggested.

There was an undercurrent of uncertainty, though... we are an educational not-for-profit and we have $960,000 in grant money from the National Endowment for the Humanities and the Institute of Museum and Library Services. With a regime hostile to the NEH and the NEA, this funding may disappear, putting us in the hurtbox.

I don't mention my employer by name on the blog, but I love to bring visitors to our sites when they come to the NY metro area. For instance, I have taken Major Kong to visit while he was on a delivery run. The mission of the organization is important, the values the organization espouses align with my values. Our President noted the challenges we may be facing, and told us that we weren't alone in the fight, then he urged us to call our congressional reps. He noted that Kirsten Gillibrand and Louise Slaughter are very supportive on the arts and the humanities. It was the first time that he has ever been explicitly political, but the political has become personal, and we, like many others, are fighting for our lives.

Sunday, April 23, 2017

What Do We Want? SCIENCE!

Yesterday was a great day- I took a vacation day and headed down to the NYC March for Science. I met up with
Yastreblyansky (nice to put a face to the name) at 65th and Broadway and we had to walk up to 68th St to queue up for the march due to the number of attendees. The crowd was amazing- there were a lot of really smart people, a lot of kids were in attendance with their parents and teachers. The signs were awesome, a lot of them played on Pi and the square root of negative one. Many signs, including my own, played on the whole 'Alternative Facts' dope-trope. Another popular theme was 'small hands can't grasp big facts'. One woman had a heart-wrenching sign... eight years of primary school, four years of high school, four years undergraduate college, seven years of graduate school, four years post-doc, under one year to take it away.

It was a coldish, rainy day- my sign started soaking up water before we hit Times Square- but spirits were high. It was fun meeting physicists and psychologists, and school kids, all of whom were advocating for funding science and for basing public policy on evidence-based science. There were a couple of places where the crowd started booing- passing a 9/11 'Truther' and passing the The Trump International Hotel and Tower in Columbus Circle. The march ended in Times Square, where, by happy coincidence, a samba group was drumming. The overall vibe in the Broadway pedestrian plaza was festive. I ran into Secret Science diva Dorian Devins, along with her fantastic husband and a couple of other SSC regulars. I also ran into the awesome scientist/adventurer Dr Evon Hekkala, her fantastic husband, and their lovely children. I had a great conversation with some folks from Jersey who had met at the NYC Women's March and were continuing their resistance activities (nevertheless, they persisted). I also ran into an alumnus from my Prestigious Bastion of Prestige who had graduated a few years ahead of my enrollment, but we had several biology professors in common. We must have spent an hour shooting the breeze about the teachers we had in common, about current mutual acquaintances. He hinted to me that Morbid Anatomy might be rising, Phoenix-like, from the ashes.

Finally, around 3PM, I decided that, in desperate need of a piss-break, I would retreat to the shelter of a tavern. After a warming shot of Tullamore Dew, I was fortified for the subway ride back to the Bronx- I passed small groups from the march and we greeted each other warmly. I walked all the back to Columbus Circle, and there were a bunch of Fordham University students hanging out outside the subway station. We shouted one of the slogans from the march:

WHAT DO WE WANT?
SCIENCE!
WHEN DO WE WANT IT?
AFTER PEER REVIEW!

Thursday, April 20, 2017

FOR SCIENCE!

This Saturday, I am planning on attending the NYC March for Science, so I registered tonight. My great and good friends at the Secret Science Club are planning on attending, though I imagine that any attempt to organize a group ahead of time would be like herding cats. Suffice it to say, the rally starts at 10:30AM at Central Park West and 62nd St, so any of the SSC regulars can rally there.

Longtime readers will know of my love for science, and my feeble layperson's attempts to promote it. It's time to put my moxie where my mouth is and to step up for evidence-based policy. If you are in the NY Metro Area, and are planning on attending, please let me know. I'll be the guy who looks a lot like the profile picture at the right, so I won't be that hard to find.

And on a lighter note, here's a whimsical number from nerd-approved They Might Be Giants:





That might be considered an unofficial theme song for the march.

Tuesday, April 18, 2017

Secret Science Club Post-Lecture Recap: Black Holes, Quantum Mechanics, and String Theory

Last night, I headed down to the beautiful Bell House in the Gowanus section of Brooklyn for this month's Secret Science Club lecture featuring physicist Dr Robbert Dijkgraaf, former president of the Royal Netherlands Academy of Arts and Sciences and director of the Institute for Advanced Studies. Dr Dijkgraaf lectured on the narrow topic of 'basic questions about space and time'.

For a long time, scientists believed that space was infinite and rigid, and that time flows universally on... the universe was the perfect stage on which humans could act. Einstein came onto the stage in the early 20th century and posited that time was merely a 4th dimension, and that space and time were actually unified- spacetime. Dr Dijkgraaf then displayed an animation of a 4-dimensional cube being rotated, similar to this video, noting that this is actually a 2-dimensional rendition of a 4-dimensional cube being rotated. He noted that, the retina being flat, the eye doesn't see in three dimensions, but the brain fills in the third dimension when the image is interpreted. Dr Dijkgraaf joked about a colleague who, on seeing a representation of a 4th dimension hypercube casting a shadow onto the third dimension, commented, "It's more simple to see in five dimensions."

Dr Dijkgraaf compared spacetime to a roll of film, with each particular instant being a frame- he displayed a video of two particles moving through spacetime, then displayed an image of the video broken down into a stack of frames, so that the image of the particles' motion appeared as two strands- he noted that everything happens at once in spacetime. He then joked that every formula should fit on a T-shirt, using Einstein's E = mc2 as an example. The equal sign in the formula connects the two sides of the equation, connecting two different worlds- in the Energy/Mass equivalence formula, energy and mass are 'talking to each other'- a small amount of mass can be converted into a vast amount of energy. Walking across the stage, Dr Dijkgraaf noted that he weights more as he moves across the stage (about one millionth more) than he does while he is standing still. He then displayed an image of Einstein's Field Equations:




He noted that, according to General Relativity, mass tells spacetime how to curve and that spacetime tells mass how to move.

Dr Dijkgraaf then presented a basic history of the Theory of General Relativity, noting that Arthur Eddington's 1919 observation of a total solar eclipse (PDF) offered proof that light was deflected by gravity- the stars behind the sun were visible due to this deflection. Einstein quickly became famous after this proof of his Theory of General Relativity, though communications were fairly slow in those days. Dutch physicist Hendrik Lorentz acted as the intermediarycommunications-relay between Eddington and Einstein. The NY Times responded to the news with a whimsical headline:




Einstein was hailed as a 'new giant in world history' in the German press.


Einstein's calculations indicated that the universe is not static, but is expanding. At one stage, the universe was smaller, perhaps even a mere point. Einstein believed in a static universe, and added a cosmological constant to his equations in order to achieve a static universe. Urban legend has Einstein labeling the cosmological constant as his 'biggest blunder'. The model of an expanding universe was first proposed by Belgian priest and astrophysicist Georges Lemaître, who pioneered the Big Bang theory with his model of a 'primeval atom' or 'cosmic egg'. Edwin Hubble observing a redshift in light from distant galaxies, proved that space is expanding. In 1965, engineers Arno Penzias and Robert Woodrow Wilson accidentally discovered the cosmic microwave background radiation as they adjusted a radio telescope. Dr Dijkgraaf joked that the engineers had scooped the physicists, who were working on the problem of finding evidence for the Big Bang. The immediate post Big Bang period is known as First Light... and for people familiar with the old broadcast televisions, about 1% of TV static was due to radiation from the Big Bang.

In 2003, the WMAP satellite created an image of the cosmic microwave background radiation, an image refined by the Planck spacecraft. Dr Dijkgraaf likened the image of the 300,000 year old universe (from 13.8 billion years ago) to the universe's 'baby photo':




Dr Dijkgraaf noted that instruments cannot 'see' farther than the pointillist painting obtained by WMAP and Planck.

After the Big Bang, matter condensed, stars formed, and galaxies coalesced- the cosmic evolution started to be pieced together in the last one-hundred years, and a different history of the universe is being written. There are unknown facts, but the cosmologists know what they don't know. Dark matter is one mystery, it comprises five times the mass of baryonic matter... Dr Dijkgraaf stated that 'transparent matter' might have been a better name for the stuff. He likened dark matter to a Christmas tree, with the baryonic matter being the lights. Dark energy is the name proposed for the force which causes the increasing rate of expansion of the universe, the force in empty space which pushes the universe apart. Between dark matter and dark energy, 96% of the universe is 'missing', only 4% is known to us. Dr Dijkgraaf noted that other scientific fields work with a lot of 'dark knowledge'- for instance, paleontologists have to reconstruct evolutionary relationships with a fossil record that has huge gaps.

The topic of the lecture then shifted to black holes. There are two broad categories of black holes- stellar black holes are extinct stars which collapse under their own gravity while galactic black holes, also known as supermassive black holes, have a mass of millions or billions of stars. These galactic black holes spew vast radiotion plumes as gigantic, violent explosions constantly occur on their periphery. Stars in the galactic center revolve around the galactic black hole in elliptical orbits. A proposed Event Horizon Telescope would look into the center of the galaxy to obtain more information about the conditions around the black hole in the the galactic center.

Dr Dijkgraaf also noted the discovery of gravitational waves by the Laser Interferometer Gravitational Wave Observatory- this gravitational wave detector observed small waves which probably resulted from the interaction of binary black holes merging into one larger object. The LIGO is sensitive enough to measure the gravitic effects of an overhead cloud- Dr Dijkgraaf joked about 'lying on your back, feeling uplifted'.

A collision between two black holes detected in September 2015, which occurred over 1.3 billion years ago, resulted in the most violent explosion ever measured, a cataclysm which released more energy than that released by the entire visible universe.

Dr Dijkgraaf then shifted the topic of the lecture to particle physics and the Standard Model. He displayed a diagram of the years from concept to discovery:




Looking at the scant duration between theorizing about the existence of the muon and it's discovery, he noted that the joke concerning the discovery was, "Who ordered this?" The Higgs Boson took five decades to find. Peter Higgs, 86 years old when the discovery was made, stated that he was happy that the boson which bears his name was discovered during his lifetime. In contrast, it took a century between Einstein's proposal about gravitational waves and their discovery. Dr Dijkgraaf noted that science is a relay race, and that researches must pass the baton on to their successors.

Black holes took a longer time to discover- in the 18th Century, John Michell proposed the existence of stars with gravitational forces which were so powerful that light could not escape. In terms of mass, if the earth were compressed to the point where its gravitational field was so strong that light couldn't escape, it would be a mass two centimeters in diameter. In 1939, Robert J. Oppenheimer and Hartland Snyder described how a collapsing mass, such as a star collapsing under its own weight, could form a black hole. The black hole itself can be likened to a gravitational singularity, the boundaries of a black hole are known as the event horizon. An object within the event horizon is doomed. Dr Dijkgraaf noted that, if our sun collapsed into a black hole, it would have an event horizon three kilometers in diameter, which he jokingly described as 'Brooklyn sized'.

Time inside the event horizon flows differently, possibly stopping altogether. If the Big Bang represents time's beginning, black holes represent an end of time. The term black hole was coined by John Wheeler, who noted that black holes were a paradox- the laws of physics that we know break down. Nevertheless, the universe works, and we need to formulate a new theoretical framework. Originally, Einstein did not like the Big Bang and black holes, preferring a static universe, but he changed his mind as new evidence accumulated. Dr Dijkgraaf quipped, 'Sometimes, a theory is smarter than its discoverer.'

The topic then shifted to quantum theory- Dr Dijkgraaf posed the question, 'Why is every electron the same, does Nature have a perfect electron factory?' Richard Feynman recounted a telephone call from John Wheeler on this subject:

I received a telephone call one day at the graduate college at Princeton from Professor Wheeler, in which he said, "Feynman, I know why all electrons have the same charge and the same mass" "Why?" "Because, they are all the same electron!"

Dr Dijkgraaf asked us to consider an electron moving up and down through spacetime, making copies of itself and weaving a Big Knot- is the result many particles, or are they all the same? Richard Feynman drew diagrams representing the behavior of particles, showing the splitting and recombination of particles. The Feynman diagrams even graced the family van. In quantum mechanics, there is one edict- 'Everything which is allowed is obligatory, everything which can happen will happen.' The duplication of particles through quantum mechanics might form an explanation for dark energy.

The Planck length (×10-35 meter range) represents the size of the tiny 'pixels' which make up the universe, while the Hubble Scale (×1025 meter range) represents the size of the universe. About smack dab in the middle we find the scale at which life is organized (×10-5 meter range). The hot Big Bang was preceded by a period of rapid expansion of space known as the Cosmic Inflation Period. The classical density perturbations, the small disturbances at the quantum level, determined the large structure of the universe... the very small determines the structure of the very big. Dr Dijkgaard quipped that empty space is an exciting subject, and that more money should be dedicated to the study of Nothing.

Thermal energy, known as Hawking radiation is expected to be emitted from the event horizon of a black hole- two particles are thought to be produced at the event horizon, one which cannot escape and one of which is liberated due to quantum mechanics. Dr Dijkgraaf paused in the lecture to joke, 'What is the sound before the Big Bang? Oh, shit!" He noted that black holes are the most mysterious objects that we are aware of... they are the most complex objects, the objects which collect the most 'information'.

This formed Dr Dijkgraaf's shift into string theory and the role of black holes in string theory. He brought up such topics as AdS/CFT correspondence and the holographic principle, noting that a 'holographic universe' can be projected on black holes because of the physics that occurs on the event horizon. Space can warm and time can wrap. The visible universe can be explained by the interaction of light and matter, but the interactions are complicated and chaotic. The basic building blocks of the universe, though, are simple. Particle physicists see simplicity, but complexity can be seen in the interaction of molecules in a glass of water. Hydrodynamics and thermodynamics are emergent properties... the laws that regulate spacetime might emerge from something more simple, perhaps pure information acting as a matrix.

In the Q&A, some bastard in the audience asked the good doctor to comment on this recent model calling into question the role of dark energy. He responded that physics is an ever-changing field and that, ten years from now, the entire model might be different due to refinements and new observations, though it must be noted that Einstein was usually correct. In response to another question, Dr Dijkgraaf recounted an amusing family anecdote- his son asked him, 'What happened before the Big Bang?' He replied, 'That's what Daddy is working on.' The next day, his son asked, 'And?'

All in all, Dr Dijkgraaf delivered a great lecture- it was a combination of grand overview of physics and mind-bending string theory that I really need to read up on more. He is an engaging, informative lecturer who has a huge following online... if you can read Nederlandish, he has a lot of material. Once again, the Secret Science Club dished up a fantastic lecture- kudos to Dr Dijkgraaf, Dorian and Margaret, and the staff of the beautiful Bell House. I'll try to hunt down video links to illustrate these topics, but right now I have to run out for a second night of beer-drinking in a row. It's bar trivia night, and what better way to celebrate Useless Knowledge is there?

Monday, April 17, 2017

Hothead's 'Holiday'

It's been interesting to see advertisers bailing on Billo after the latest round of sexual harassment allegations. Seeing as his audience is a bunch of sexist regressive types, it's no surprise that ratings for his show are healthy, even as O'Reilly takes a vacation while the shitstorm rages.

If I had to guess O'Reilly's vacation destination, I would suspect that he would relive his glory days by visiting the Falklands war zone (hey, he could have contracted cirrhosis of the liver from those fine Argentine wines). My real motivation for joking about O'Reilly traveling to Las Malvinas is that it's a perfect excuse to post the video of one of my all-time favorite anti-war, anti-corporate media, and anti-government manipulation songs, the New Model Army's blistering Spirit of the Falklands:





The natives are restless tonight, sir
Cooped up on estates with no hope in sight
They need some kind of distraction
We can give them that
'Cause they'd kill if they only had something to kill for
They'd die if they only had something to die for
They'd cheer if they only had something to cheer for
We can give them that



Oh, yeah, Billo gave them that... with any luck, his career of giving them that will soon be over.

Sunday, April 16, 2017

Happy Easter!

Here's wishing all of my readers a happy and healthy Easter. I always loved the Easter holiday, because it signals the promise of Spring, with all that it entails. The daffodils and crocuses are in full bloom, the warm-weather birds have come back, my delicious stinging nettles are finally ready to be collected. Everything is coming awake... the toads are singing their love songs. I even saw one of our resident bullfrogs in the pond.

Today has been uncharacteristically warm (85F, 29.4C), so in accordance with recent Easter tradition, I had to yell at a couple who had jumped the fence at work. Seriously, people, there's a sign on the gate that says 'STAFF ONLY', can't you people read? There were a couple of folks in a picnic area adjacent to the parking lot... I have no problem with people on-site as long as they don't jump a fence and they know to clear off at sundown. I don't mind people looking for hidden Easter eggs, I do it myself, but they can do it in their own places.

Saturday, April 15, 2017

Tax Day Post Rant

I know that tax returns are actually due on the 18th, but April 15th being the traditional tax day, I typically post about taxes, and my attitude toward them, this time of year. Ordinarily, I would post about how I don't mind paying my taxes, as I see them as the dues I pay to live in a club I call 'civil society'. This year, though, my attitude is different... somehow, something's changed. While I didn't attend any of the tax day protests (I decided to save my time off for next week's March for Science), I am pissed that the head kleptocrat hasn't released his tax returns.

Even more infuriating is the fact that he and his corrupt maladministration are hoovering up taxpayer dollars with their conflicts of interest. Even when the fucker in the White House is goofing off, he's dipping into the till. Ordinarily, I don't mind paying my taxes, but nothing is ordinary anymore.